Using cognitive neuroscience to understand why kids struggle in school
March 30, 2016
The term dyslexia has been a part of the education lexicon for decades. When it was first “discovered” in the 1970s, there were no technological processes yet in place to prove it was a brain-based condition.

However, writes Martha Burns, PhD, in a Science of Learning blog, “psychologists, neurologists, and special educators …. assumed dyslexia [had] a neurological basis. In fact, the term ‘dyslexia’ actually stems from the Greek ‘alexia,’ which literally means ‘loss of the word’ and was the diagnostic term used when adults lost the ability to read after suffering a brain injury.”

At the time, the cause, “was deemed not important,” continues Burns. “Rather, the goal was to develop and test interventions and measure their outcomes without an effort to relate the interventions to the underlying causation.”

However, using neuroscience to pinpoint exactly why a student struggles in reading or math can help educators come up with specific and effective interventions.

School psychologist Steven G. Feifer, DEd, ABSNP, became interested in neuroscience as it relates to reading when, early in his career, he had an opportunity to evaluate a very impaired student named Jason.

“His IQ was 36,” recalls Dr. Feifer, “but he was an incredible reader.   This was pretty difficult to explain using a discrepancy model paradigm, which falsely implies that an IQ score represents a student’s potential.  I made a concerted paradigm shift, and tried to find a more scientifically rigorous explanation for Jason’s amazing skills.  This quickly led me to the research library at the National Institutes of Health (NIH).

“As it turned out, Jason was quite easy to explain,” he continues. “He had a condition called hyperlexia. After much research, I presented information about the neural mechanisms underscoring hyperlexia at Jason’s IEP meeting.  The IEP team was incredibly receptive to the information and immediately amended Jason’s IEP so he received inclusionary services in a regular fifth-grade classroom.

“Jason turned out to be the single highest speller in fifth grade. I was convinced that discussing how a child learns from a brain-based educational perspective, and not solely an IQ perspective, was the best way to understanding the dynamics of learning and inform intervention decision making.

“The following year, I enrolled in a neuropsychology training program and was fortunate enough to study with the top neuropsychologists in the country.”

Dr. Feifer, who has 19 years of experience as a school psychologist, was voted the Maryland School Psychologist of the Year in 2008 and the National School Psychologist of the Year in 2009. He is a diplomate in school neuropsychology and currently works as a faculty instructor in the American Board of School Neuropsychology (ABSNP) school neuropsychology training program.  He continues to evaluate children in private practice at the Monocacy Neurodevelopmental Center in Frederick, Maryland, and consults with numerous school districts throughout the country.

Dr. Feifer has written several books and two assessments that examine learning disabilities from a neurodevelopmental perspective—the Feifer Assessment of Reading (FAR) and the Feifer Assessment of Mathematics (FAM).

Archives